Near-optimal max-affine estimators for convex regression
نویسندگان
چکیده
This paper considers least squares estimators for regression problems over convex, uniformly bounded, uniformly Lipschitz function classes minimizing the empirical risk over max-affine functions (the maximum of finitely many affine functions). Based on new results on nonlinear nonparametric regression and on the approximation accuracy of maxaffine functions, these estimators are proved to achieve the optimal rate of convergence up to logarithmic factors. Preliminary experiments indicate that a simple randomized approximation to the optimal estimator is competitive with state-of-the-art alternatives.
منابع مشابه
Max-affine estimators for convex stochastic programming
In this paper, we consider two sequential decision making problems with a convexity structure, namely an energy storage optimization task and a multi-product assembly example. We formulate these problems in the stochastic programming framework and discuss an approximate dynamic programming technique for their solutions. As the cost-to-go functions are convex in these cases, we use max-affine es...
متن کاملOptimal bounds for aggregation of affine estimators
We study the problem of aggregation of estimators when the estimators are not independent of the data used for aggregation and no sample splitting is allowed. If the estimators are deterministic vectors, it is well known that the minimax rate of aggregation is of order log(M), where M is the number of estimators to aggregate. It is proved that for affine estimators, the minimax rate of aggregat...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملFinite-Horizon Min-Max Control of Max-Plus-Linear Systems
In this note, we provide a solution to a class of finite-horizon min–max control problems for uncertain max-plus-linear systems where the uncertain parameters are assumed to lie in a given convex and compact set, and it is required that the closed-loop input and state sequence satisfy a given set of linear inequality constraints for all admissible uncertainty realizations. We provide sufficient...
متن کاملOn the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کامل